

PM-215 **Pocket Optical Power** Meter

INSTRUCTION MANUAL

Revision 1.0

is the registered trademark of OPTOKON, a.s. Other names and trademarks mentioned herein may be the trademarks of their respective owners

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

OPTOKON, a.s.

Cerveny Kriz 250 586 01 Jihlava Czech Republic

tel. +420 564 040 111 fax +420 564 040 134

WWW.OPTOKON.COM INFO@OPTOKON.COM FTTH.OPTOKON.COM

Contents

1. Introduction	4
2. Features	4
3. Application	4
4. Accessories	5
4.1 Standard	5
4.2 Optional	5
5. Specifications	6
6. Safety information	6
7. Maintenance	6
7.1 Battery care	
7.2 Instrument care	
7.3 Optical connector care	
8. Instrument and button function description	8
8.1 Operating keys	
8.1.1 [OFF]	
8.1.2 [MEM]	
8.1.3 Menu #1: Absolute power measurement mode [REL] and [
8.1.4 Menu #2 – Relative power measurement mode	
9. Working with the internal memory	
9.1 SAVE RESULT	
9.2 VIEW RESULTS	
9.3 UPLOAD RESULTS	
9.4 ERASE RESULTS	
10. Insertion Loss Measurement	
10.1 Basic theory	
10.2 Method 6	
10.2.1 Setting the reference	
10.2.2 Measurement Loss	
10.3 Method 7	
10.3.1 Setting the reference	
10.3.2 Measurement Loss	_
11. Power loss and decibels	
12. Calibration, service center	20

1. Introduction

The PM 215 optical power meter is a small, pocket size low cost item. The small size does not prevent the optical meter fulfilling all the technical requirements for field equipment. The unit can be easily carried in the pocket or on a belt. It can be placed within rack mount ODF's with the display on the top or on the side. The Li-pol rechargeable battery ensures a long term working time with a minimum life time of 2 years. The unit is able to store 100 measurements which can be uploaded to a PC and managed with SmartProtocol software.

The instrument can be used separately to measure absolute or relative optical power in optical networks or with the **LS-800 Optical Light Source**, **LS-215 or OFT 820 Loss Test Set** for optical loss measurement on singlemode and multimode fiber cable at six working wavelengths.

2. Features

- Small size, light weight
- Six working wavelengths
- Absolute and Relative optical power measurement
- Internal two level memory structure
- Capacity up to 100 measurements
- SmartProtocol SW generation of test reports
- Data exporter
- USB port for:

Charging the battery Data upload to PC Firmware upgrade

- Built-in Li-Pol rechargeable battery pack
- Auto Off
- Battery status indicator

3. Application

- Absolute or relative optical power measurement.
- Optical network testing.
- Measurement output power of optical transmitters.
- Measurement input power at optical receivers.
- Measurement attenuation in fiber cabling, in conjunction with the LS-800 Optical light source, LS-215 or the OFT 820 Loss Test Set.
- Measurement loss of connectors, splices, adaptors, switches and other fiber optic components.
- Easy and quick identification of failure points in fiber optic networks
- Suitable for SM and MM applications.

4. Accessories

4.1 Standard

- Power meter
- Universal 2.5 mm adaptor (TE-ADP-250)
- Power charging adaptor
- Traceable calibration certificate
- USB cable
- Hard carry case (TE-HC-01)

4.2 Optional

- Master patchcords
- Master adaptors
- Universal SFF 1.25 mm adaptor (TE-ADP-125)
- Soft carrying case

Changeable input adapters:

Power charging adaptor

Soft case: TE-EVA-215 130x8x32 mm

5. Specifications

Specifications:		Note:
Photodetector	1 mm InGaAs	
Working wavelengths	850, 1300, 1310, 1490, 1550, 1625 nm	can be customized
Uncertainty	± 5% 1310, 1550 nm @ -20dE	
Resolution	0.01	
Dynamic range	-60 dBm to +10 dBm -53 dBm to +10 dBm	1300, 1310, 1490, 1550, 1625 nm 850 nm
Dimensions	15 x 38 x 90 mm	including 2.5 mm universal adaptor
Weight	less than 80 g	battery loaded
Temperature Humidity (non cond.)	operating -10 to +50 °C, storage-40 to +70 °C 0 – 95%	
Operating temperature	-10 to +50 °C	
Battery working time	> 75 hrs	between battery charging
Battery life time	> 2 years	

Compliant with RoHS-requirements (2002/95/EG, 27.01.2003)

6. Safety information

The PM 215 instrument emits no optical power itself and does not create any hazards to the user.

WARNING!

- Never use magnifying devices to inspect optical fiber ends unless you are sure that no optical power is being emitted.
- Use only magnifying devices with a built-in infra-red filter to ensure safety.
- During operation, testing or maintenance of a fiber optic system, never look into an active fiber optic cable. Infrared radiation may be present and permanent eye damage can result.
- Avoid direct exposure to the beam.
- Do not activate the laser when there is no fiber attached to the optical output connector

Under no circumstances should you look into the end of an optical cable attached to the optical output when the device is operational. Laser radiation can seriously damage your eyesight.

7. Maintenance

7.1 Battery care

The PM 215 comes equipped with a built-in charger and internal battery pack.

- Before using the PM 215 for first time, charge fully battery pack.
- Use the USB charger, cable and USB port for charging.
- Charging is not recommended until battery status is 30% or less. Recommended charging time of battery pack is 4 to 7 hrs.
- We don't recommended charge the battery pack fully before storing PM 215 (optimal value is about 70 %).
- If you are not going to use the PM 215 for long period, charge the battery pack once every six months.

- The battery pack is a consumable. Repeated charging and discharging degreases battery pack life. Please contact OPTOKON for battery pack replacement.
- Battery status informs about current energy of battery. In case PM-215 has fully battery charged, is displayed this char ", ✓ "(figure 2).

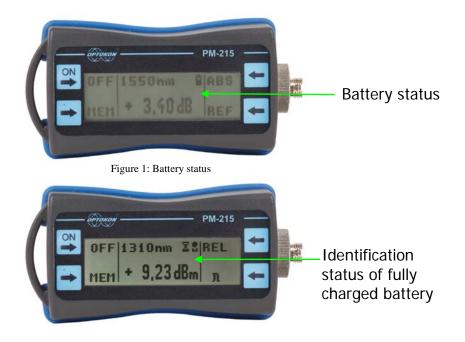


Figure 2: Status of fully chargered battery

7.2 Instrument care

- During storage and transport keep the instrument in its carry case to protect against crushing, vibration, dust and moisture.
- Where possible keep the instrument away from strong sunlight.
- Clean the instrument housing using alcohol or other cleaning agents. Acetone or other active solvents may damage the case.
- The instrument is resistant to normal dust and moisture, however it is not waterproof. If moisture does get into instrument, dry it out carefully before using it again.

7.3 Optical connector care

- Cleanliness will affect the performance of an optical fiber system.
- All connectors and fiber end faces need to be clean prior to testing.
- Clean all connectors, adapters, and attenuators before making any connections.
- Use appropriate optical cleaning supplies to keep connectors and adaptors free from contamination.
- The following cleaning materials are recommended and can form part of your cleaning kit:
 - Lint-free laboratory wipes.
 - Isopropyl alcohol in pressurised dispenser
 - Lint free pipe cleaners
 - Clean, dry, oil-free compressed air

8. Instrument and button function description

Figure 3: PM215

Press " key to turn the unit on or off.

After switching on, the type of device, serial number and firmware version will be displayed (figure 4).

The unit always starts up with displaying the settings when it was switched off. For example, if absolute mode measurement, wavelength 1550 nm and Auto Off is selected and the unit is switched off, after pressing the ON button, the unit will start up with the same settings.

Figure 4: View of display after turn on PM-215

8.1 Operating keys

Figure 5: Function of button

PM-215 has 4 operating keys that have function corresponding by display.

8.1.1 [OFF]

For turn off device press key "OFF" the device will display options set on/off more function of PM-215 (AUTO OFF and Rotate) if you don't press any keys for 3s, PM 215 is switched off.

Figure 6: Auto off function and rottate function

[AUTO OFF]

Activation and deactivation function Auto Off: Press button OFF (displayed figure 7.), you can using the button " \boxtimes " enable / disable Auto Off. The unit will display this symbol " \boxtimes " (function is activated figure 3).

If Auto Off is enabled, the unit will switch off after 10 minutes of no activity.

[Rottate]

Rottate function switch from right handed to left handed. (figure 7 and 8)

Figure 7: default right hand

Figure 8:Left hand rotate

8.1.2 [MEM]

To access the memory, press the MEM key. Use [↑] or [↓] keys for selecting the appropriate function. (SAVA, VIEW, UPLOAD or ERASE)

Figure 9: Menu of PM-215

8.1.3 Menu #1: Absolute power measurement mode [REL] and $[\lambda]$

In the absolute power measurement mode the absolute value of the optical signal in dBm units is shown on the display.

This screen will appear after the instrument is switched on and information regarding the type of device, serial number and firmware version will appear (if the unit was switched off in the "absolute power measurement mode").

[λ]

Selects 850, 1300, 1310, 1490, 1550, 1625 nm wavelengths.

[REL]

Activates the relative power measurement mode (unit dB). Recalls the last set reference for a selected wavelength. Goes to menu #2.

8.1.4 Menu #2 - Relative power measurement mode

If the relative power measurement mode is on, the value of the optical insertion loss in dB units which corresponds to the performed reference is shown on the display. This screen is displayed after the instrument is switched on and information regarding the type of device, serial number and firmware version is described (if the unit was switched off in the "relative power measurement mode").

[ABS]

Returns unit to the absolute power measurement mode (unit dBm). Goes to menu #1.

[REF]

Sets and stores the new reference for the selected wavelength. Note: The new reference must be confirmed by the following screen:

9. Working with the internal memory

The PM 215 memory has a structured, two-level organization. The results are stored in memory positions (MEM) in folders called Cable (CAB). See the table:

A maximum of 100 results can be stored in the memory, although the maximum number of CAB and MEM is 100. This means, if 50 CAB folders are used, each CAB folder can contain a maximum of two memory positions (MEM), and vice versa; if only two CAB folders are used, each folder can contain up to 50 memory positions (MEM).

CAB1	MEM1
	MEM2
	MEM3

	MEM X
CAB2	MEM1
	MEM2
	MEM3
	MEM Y
	MEM1
	MEM2
	MEM Z
CAB N	MEM1
	MEM2
	MEM3
	MEM Q

9.1 SAVE RESULT

- 1. Press [MEM]
- 2. Use [♠] or [♦] keys for selecting the "SAVE" and press "OK"

3. Use $[\mbox{\ }\mbox{\ }\mbox{\ }\mbox{\ }]$ keys for selecting the appropriate CAB and press $[\mbox{\ }\mbox{\ }\m$

4. Use [♠] or [♦] keys for selecting the appropriate MEM and press [OK].

9.2 VIEW RESULTS

- 5. Press [MEM].
- 6. Use [♠] or [♦] keys for selecting "View" and press [OK].
- 7. Use $[\uparrow]$ or $[\lor]$ keys for selecting the appropriate CAB and press [OK].

- 8. Use $[\uparrow]$ or $[\downarrow]$ for selecting the appropriate MEM.
- 9. Measure value will be displayed
- 10. Press [OK] to return to Menu#1 or #2.

9.3 UPLOAD RESULTS

For connection to PC we can use those options:

- 1. Network client (Hyper terminal, Tera term, putty and etc.)
- 2. Smart protocol and Data exporter.
 - 1) Putty
 - a) Connect the PM 215 to a PC using the USB cable provided and turn the PM 215 on. The PC will automatic install drivers or prompt you to install the drivers for new hardware. Software can download from this page: http://www.optokon.cz/testers-manuals. These drivers will create a virtual serial com port.
 - b) Start putty as administrator from installed folder.

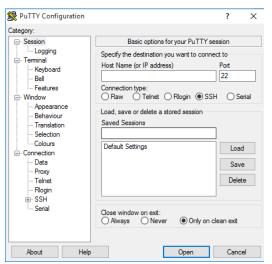


Figure 10: First start of putty

c) Choose the connection type on Serial.

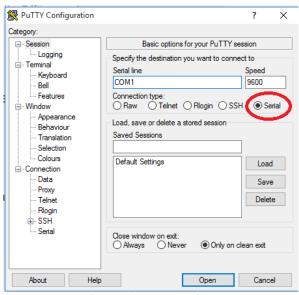


Figure 11:Putty settings

d) Set the speed to 19200 and virtual serial port that the PM 215 is connected then click on Open. (if you dont know serial port that is assigned to PM device check: control panel → device manager →Ports LTP and Serial ports)

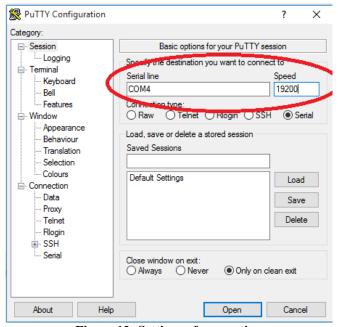


Figure 12: Settings of connection

e) Use [♠] or [♠] keys for selecting "UPLOAD DATA" and press [MEM].

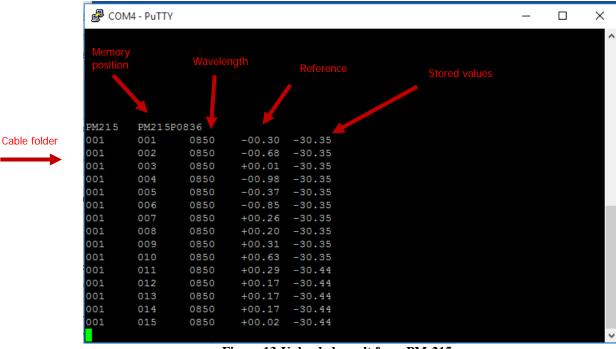


Figure 13:Uploaded result from PM-215

The data from this window can be easily copied to any other application. Similar process can use for another network clients.

f) Control via Terminal

Control is performed by entering commands that are written to the window of Putty. Note: Commands for PM-215 are the same as for OFT-820, PM-800 and atc.

List of commandes for terminal:

Command	Significance	Notes	
V	Actual value of display		
r	Reference	This commands are shown in the window of	
l	Actual wavelength	HyperTerminal	
n	Type and serial number	Tryperrenman	
1	Simulation of pushing first button	771.	
2	Simulation of pushing second button	This commands are shown on the display of device	
3	Simulation of pushing third button		
0	Reset device		

2) Smart protocol

Smart Protocol software is a flexible solution for data capture, analysis and reporting to fiber optic loss. The Data Exporter is a software utility for easy import measured data from OPTOKON measuring devices to PC. Those programs with manuals can download at this page: http://www.optokon.cz/testers-manuals

9.4 ERASE RESULTS

This function erase all stored records from your memory. Please Use this function only if you will be sure that you don't need recorded data for future using.

- 1. Press [MEM].
- 2. Use [♠] or [♦] keys for selecting "ERASE" and press [OK].
- 3. Confirm function or not
- 4. After confirmation all memory contents will be erased.

10. Insertion Loss Measurement

10.1 Basic theory

Loss measures the signal degradation in a fiber optic cable. A light source injects an optical signal of the appropriate wavelength into the fiber and a power meter measures the received signal at the same wavelength.

There are two different measurement methods:

- Method 6
- Method 7

according to IEC 874-1 4.4.7.4.

Power measurement is the basis of optical testing and determines the power budget of the fiber optic link by comparing the power of the transmitter and the sensitivity of the receiver. This difference is the maximum acceptable loss. Power loss is caused by different phenomena such as attenuation of the fiber, dirty connector mating faces, connector misalignment, loss of splices and other issues such as sharp fiber bends.

The "end to end" loss test is the most commonly used acceptance test for power loss in fiber optic links. The test is based on measurement the power difference at the input and output of the link.

The PM 215 and LS-800/LS-215 are used for this test, where the light source (LS-800/LS-215) acts as a transmitter and the optical power meter (PM 215) as a receiver.

The "end to end" test includes two steps:

- 1. Setting the reference
- 2. Measurement the loss

10.2 Method 6

For method 6 two master cords are used to set the reference. Method 6 cancels the effects of the master cords and one adaptor for all subsequent measurements.

10.2.1 Setting the reference

- 1. Connect the first master cord to the power meter (PM-215).
- 2. Connect the second master cord to the light source (LS-800/LS-215).
- 3. Use the master adaptor to connect the two fiber ends (figure 15).
- 4. Power on the light source and by pushing $[\lambda]$ select the appropriate wavelength.
- 5. Power on the power meter and by pushing [λ] select the appropriate wavelength range.
- 6. On the power meter activate the relative power measurement mode by pushing **[REL]**.
- 7. Set and store the new reference for the selected wavelength push [REF], [CONFIRM].

Figure 14: Setting reference by method 6

10.2.2 Measurement Loss

- 1. Do not disconnect the master cords from the light source and the power meter.
- 2. Disconnect one master cord from the adaptor.
- 3. Connect the trace to be measured between the master cords. An extra master adaptor is required (fig.16).
- 4. The power meter display will report the loss in dB.

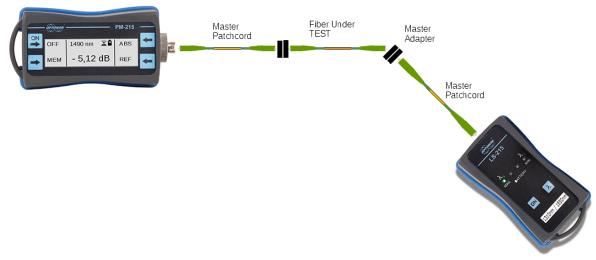


Figure 15: Measurement Loss by method 6

10.3 Method 7

For method 7, one master cord is used to set the reference. The master cord will be cancelled for all subsequent measurements.

10.3.1 Setting the reference

- 1. Connect the master cord to the power meter (PM 215).
- 2. Connect the second end of the master cord to the light source (LS-800/LS-215).
- 3. Power on the light source and select the appropriate wavelength by pushing $[\lambda]$.
- 4. Power on the power meter and select the appropriate wavelength range by pushing $[\lambda]$.
- 5. On the power meter activate the relative power measurement mode by pushing **[REL]**.
- 6. Set and store the new reference for the selected wavelength push [REF], [CONFIRM].

Figure 16:Setting reference by method 7

10.3.2 Measurement Loss

- 1. Do not disconnect the master cord from the light source.
- 2. Disconnect the master cord from the power meter port.
- 3. Connect the trace to be measured between the power meter port and the master cord that is attached to the light source. An extra master adaptor is required.
- 4. The power meter display will report the loss in dB.

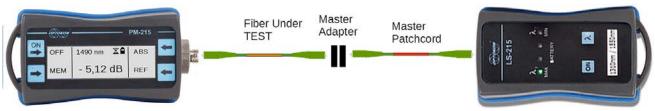


Figure 17: Measurement Loss by method 7

Note:

11. Power loss and decibels

Loss (dB)	% Loss	dBm	Power (mW)
0	0,0	-50	0,00001
0,1	2,3	-40	0,0001
0,2	4,5	-30	0,001
0,3	6,7	-20	0,01
0,4	8,8	-10	0,10
0,5	10,9	-9	0,13
0,6	12,9	-8 -7	0,16
0,7	14,9	-7	0,20
0,8	16,8	-6	0,25
0,9	18,7	-5	0,32
1	20,6	-4	0,40
2	36,9	-3 -2	0,50
3	49,9	-2	0,63
4	60,2	-1	0,79
5	68,4	0	1,00
6	74,9	1	1,26
7	80,0	3	2,00
8	84,2	5	3,16
9	87,7	7	5,01
10	90,0	10	10,00
12	93,7	12	15,84
15	96,8	15	31,62
20	99,0	17	50,12
30	99,9	20	100,00

12. Calibration, service center

OPTOKON, a.s. Červený Kříž 250 586 01 Jihlava Czech Republic

tel.: +420 564 040 111 fax: +420 564 040 134 OPTOKON@OPTOKON.COM WWW.OPTOKON.COM

